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ABSTRACT

Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For eÆcient
deployment, it is desirable for teams of robots to be able to automatically execute leader/follower behaviors, with one or more
followers tracking the path taken by a leader. The key challenges to enabling such a capability are (1) to develop sensor
packages for such small robots that can accurately determine the path of the leader and (2) to develop path-following algorithms
for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and di�erential
GPS into an e�ective sensing package for a small urban robot. This paper describes the sensor package, sensor processing
algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the results
of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and
electromagnetic interference issues particular to the performance of state sensors on small robots.
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1. INTRODUCTION

Mobile robots that are small and light enough to be carried in a backpack (i.e. \packbots") by individual soldiers have great
potential to enhance the safety and e�ectiveness of urban reconnaissance operations. The size and weight of one recent prototype
of such a robot is 60 � 50 � 17 cm and 20 kg.1 Teams of these robots can be far more e�ective than individual robots for two
reasons. First, a single robot cannot carry all of the sensor and e�ector payloads required for many missions. Second, multiple
robots will often be necessary to cover multiple points of observation.

The need for multiple robots raises the problem of how to navigate them from the departure point to the objective with
minimal burden on the human operator. Operator involvement is necessary to designate waypoints and intermediate objectives
for the �rst robot; however, it is desirable for the rest of the robot team to automatically follow the path of the leader, without
necessarily maintaining visual contact with each other.

Prior work on robot leader/follower behavior has used a variety of approaches, including visual motion tracking of the lead
vehicle2 and using INS/GPS systems to record the path of the leader, which is then traversed by the follower using the same
sensors.3 Methods depending on visual contact do not meet the needs of our application. Prior path following work based
on INS/GPS has all been done on much larger vehicles. Hence, one of the main challenges for packbots has been to identify a
sensor suite that would enable path following within the size, weight, power, and cost envelope of our vehicles. Other challenges
include coping with GPS dropouts in urban areas and under tree canopies, coping with obstacles that fall within the positional
uncertainty of the path following system, and enabling path following through constrictions that require greater positional
accuracy than is available from the INS/GPS sensors. An example of the latter is following a path that leads through a culvert.

We are developing a leader/follower system that addresses all of the above challenges. We have completed a path following
system based on Kalman �ltered IMU, di�erential GPS, compass/inclinometers, and wheel encoder data. Obstacle avoidance is
achieved with an arbiter-based architecture that combines steering votes from the path-following behavior with steering votes
from a stereo vision-based obstacle avoidance behavior. We are currently extending this system by (1) using optimal smoothing
of the leader's path to reduce the impact of GPS dropouts, (2) developing specialized feature recognition and tracking algorithms
to guide the followers through constrictions such as doors and culverts, and (3) developing more general outdoor mapping and
landmark recognition capabilities to further reduce the reliance on GPS.

Section 2 describes the navigation sensors we considered, those we integrated, and performance characterization tests done
to date on the chosen sensors. Section 3 describes the structure of our pose estimation Kalman �lter. Section 4 outlines the
architecture of our leader/follower system and describes our path-following control algorithm. Experimental results are shown
in section 5. We discuss the signi�cance of the results, highlight open issues, and outline the extensions we have in progress in
section 6.
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supported by the Tactical Mobile Robotics Program of the Defense Advanced Research Projects Agency (DARPA) Advanced Technology
OÆce under contract NAS 7-1407, task order 15089.



Figure 1. The packbot vehicle.

2. NAVIGATION SENSORS

The primary constraints for the navigation payload are accuracy, size, and power: the sensors must �t within the space and
power budgets a�orded by the chassis while delivering the resolution to reliably determine the position of the robot. Since the
packbot is an autonomous platform, all perception, computation, and power resources are carried on board. The packbot is
built upon the Urban II platform (shown in Figure 1) developed at iRobot Corporation. The chassis is approximately 60cm
long, 50cm wide and 17cm tall with roughly 13,000cm3 of contiguous payload space. A 20-cell NiCd battery pack provides a
total energy storage of 120Wh. Power consumption with the robot standing still is approximately 75W, and the power required
for driving varies with the terrain. The robot and all subsystems must be able to survive the shock of being thrown or dropped
modest distances.

Autonomous path following and generation requires that both the leader and the follower have tight control over their
respective positional accuracy. The accuracy of the sensor directly limits the ability to follow a path precisely. The accuracy
limit and resolution is dictated by the terrain and by the follower's level of autonomy. If it is desired to have a follower blindly
weave through a series of tightly spaced obstacles, i.e. trees, then the accuracy of the estimated position needs to be high -
roughly half the width of the robot. On the other hand, if it is desired to have a reactive follower weave through the same
obstacles, the accuracy requirements can be relaxed.

In order to meet the requirements of operating in such varied and unstructured environments, a combination of GPS and
inertial sensors is used. GPS information is used in clear and unobstructed outdoor areas while inertial sensor data is used to
augment GPS in areas where there is poor or no reception such as urban canyons, tree canopies, or indoors. However, there is
no commercially available integrated package that can reasonably satisfy all the desires enumerated here.

2.1. GPS Receivers

Table 1 lists the commercially available GPS receivers that were considered. Positional accuracy is increased by an order of
magnitude by using a di�erential base station to provide corrections. The real-time kinematic feature increases the resolution
by another order of magnitude. It would be advantageous to have both of these features.

The NovAtel Millennium RT-2 was selected for the initial system and has performed well. We found that heat generation
and large turn-on transients (�5A) were a problem with this receiver. To solve these problems, we plan to migrate to a card
that uses less power.

2.2. Inertial Navigation Sensors

Table 2 lists the commercially available integrated IMU packages that have been studied throughout this program. At the start
of the program, no integrated system was available which would �t into the payload. Therefore a system was built from separate
components.

A TCM2-50 compass/inclinometers from Precision Navigation provides heading and tilt. Three orthogonally mounted
QRS11-200 rate gyros from Systron Donner and an EGCS3 three-axis accelerometer from Entran are used to measure angular
rates and inertial forces. Careful consideration has to be given to the entire signal path from the sensor to the analog-to-digital
converter since the analog output of the gyros and accelerometers are proportional to the rate of rotation and magnitude of
acceleration. Initially, excessive noise in the signal caused the perceived drift rate to increase dramatically. Several steps were
taken to reduce the noise including separating and isolating power supplies solely for the gyros and accelerometers, isolating the
power and signal traces on the sensor and control board, shielding the signal traces, and taking special care of the routing of
the signal traces to avoid cross-talk between the axes.

Since the beginning of the program, fully integrated MEMS inertial measurement units have become available. Their digital
output eliminates the need for an analog-to-digital converter and increases noise immunity. These sensors are much smaller,



Manufacturer BAE/CMC BAE/CMC Motorola NovAtel NovAtel
Model Superstar RT-Star Oncore SL Millennium STD Millennium RT-2

Physical Characteristics
Power W 0.60 2.00 1.00 6.75 6.75
Length cm 7.1 10.2 8 17.9 17.9
Width cm 4.6 6.7 4 10 10
Depth cm 1.3 1.4 1.2 1.5 1.5
Volume cc 42.5 95.7 38.4 268.5 268.5
Mass g 22 50 22 175 175

Operating Ranges
Shock (endurance) g (1ms, 1/2 sine) 500 500 200 400 400
Vibration (operating) g (20Hz-2kHz) 5 5 7.7 4 4
Temperature oC -30 to 75 -30 to 75 -40 to 85 -40 to 85 -40 to 85

Communication
Comm. Method TTL Level TTL Level TTL Level RS-232 RS-232
Number of Ports 2 2 2 2 2
Update Rate Hz 1 5 1 10 10

Performance Characteristics
Velocity m=s 515 515 515 515 515

Acceleration m=s2 39.2 39.2 39.2 58.9 58.9

Jerk m=s3 2 2 5 5 5
Number of Channels 12 12 8 24 24
Signals tracked L1 L1 L1 L1/L2 L1/L2
Time to first fix (cold) s 120 120 90 70 70
Time to first fix (warm) s 45 45 45 60 60
Reacquisition time s 3 3 1 5 5

Positional Accuracy (CEP)
Stand-alone (w/o SA) m 16 16 25 11 11
DGPS (w/o SA) m 1 1 1 0.6 0.2
DGPS + RTK (w/o SA) m N/A 0.1 N/A 0.1 0.1
Time to convergence (DGPS, 1km) s N/A 200 N/A 200 180

Table 1. GPS Receiver Comparison.
Manufacturer Packbot Crossbow Crossbow American GNC American GNC BAE Systems
Model IMU400CA-100 AHRS400CA-100 cmIMU cmIMU+AHRS SiIMU01

Degrees of Freedom 9DOF 6DOF 9DOF 6DOF 9DOF 6DOF
Method 3G, 3A, 3Mag 3G, 3A 3G, 3A, 3Mag MEMS MEMS + 3Mag MEMS

Physical
Characteristics
Power W 2.80 3.00 4.20 1.50 3.00 2.50
Length cm 7.62 7.62 7.62 2.5 3.66 7.49
Width cm 5.08 9.53 9.53 2.5 3.66
Height cm 6.35 8.13 10.41 2.5 3.66 4.55
Volume cc 245.8 590.4 756.0 15.6 48.9 200.5
Mass g 450 590 640 85 85 255

Operating Ranges
Shock (endurance) g (1ms, 1/2 sine) 200 1000 1000 500 500 1000
Vibration (operating) g (20Hz-2kHz) 8 10 10 7 7 20
Temperature oC -20 to 70 -40 to 70 -40 to 70 -40 to 80 -40 to 80 -46 to 85

Communication

Comm. Method Analog RS-232 RS-232 I2C I2C RS-422/485
Update Rate Hz 16 100 60 2000 500 200
Data Latency ms N/R 3.5 25 0.75 0.75 1.25
Time to first fix s 1 1 1 0.2 0.2 0.2
Time to full accuracy s N/A 1 60 90 90 60

Gyros
Bandwidth Hz 60 10 10 500 500 75

Range Æ=sec 200 100 100 150 150 150

Resolution Æ=sec 0.01 0.025 0.025 0.01 0.01 0.01
Non-linearity %FS 1 0.3 0.3 0.1 0.1 0.01

Random Walk Æ=h1=2 (ARW) N/R 0.85 0.85 0.1 0.1 0.2

Drift Æ=h 17 20 20 17 17 2

Accelerometers
Bandwidth Hz 280 100 100 500 500 75
Range �g 5 2 2 5 5 15
Resolution mg 33 5 5 0.01 0.01 0.03
Non-linearity %FS 1 1 1 0.05 0.05 0.004

Random Walk m=s=h1=2 (VRW) 0.15 0.15 N/R N/R 0.12
Bias mg 24.9 8.5 8.5 0.2 0.2 2

AHRS

Pitch Range �Æ 50 N/A 90 N/A 90 N/A

Roll Range �Æ 50 N/A 180 N/A 180 N/A

Heading Range Æ 360 N/A 360 N/A 360 N/A

Angular Resolution Æ 0.1 N/A 0.1 N/A 0.05 N/A

Static Accuracy Æ 0.4 N/A 1.5 N/A N/R N/A

Dynamic Accuracy Æ N/R N/A 3 N/A 0.05 N/A

Table 2. Inertial Navigation Sensor Comparison.

requiring a half to a quarter of the volume of conventional integrated systems. Additionally, these units are being packaged with
magnetometers so that a complete Attitude Heading Reference System (AHRS) solution is possible.

3. POSITION ESTIMATION

Precise localization is one of the main requirements for the task of autonomous path following. The packbot mobile robot is
equipped with di�erential GPS (DGPS) that provides position estimates with 2-20cm uncertainty under favorable conditions.
These uncertainties can become much higher when operating near buildings or trees, which occlude satellite signals making GPS
navigation unreliable. During GPS dropouts, the signals from the inertial sensors, compass/inclinometers, and motor encoders
have to be appropriately combined so as to determine the location of the robot until the next GPS update. By integrating
accurate estimates of its linear and rotational velocity the packbot could potentially track its pose for a long period of time. As
the robot turns using skid steering the inherent slippage makes the estimates based on the motor encoder signals untrustworthy,



especially the ones regarding rotational velocity. Since even small errors in orientation can cause large errors in position, we
focus on deriving precise heading estimates.

The three Systron Donner gyroscopes set in an orthogonal con�guration are used for this purpose. Appropriate integration
of their signals (angular rates) provides estimates of the roll, pitch and yaw angles that determine the attitude of the vehicle. A
common diÆculty found in all approaches that rely on gyros for attitude estimation is the low frequency noise component (also
referred to as bias or drift) that violates the white noise assumption required for standard Kalman �ltering. Inclusion of the
gyro noise model in a Kalman �lter by suitably augmenting the state vector has the potential to provide estimates of the sensor
bias when the observability requirement is satis�ed. The system becomes observable when absolute orientation measurements
are available. In the case of the packbot, this information is provided by the TCM2 compass/inclinometers module. The
inclinometers measure the attitude of the robot with respect to the horizontal plane while the compass provides a measurement
of the direction of the vehicle compared to the magnetic north. Before describing in detail the Kalman �lter implementation for
estimating the orientation of the vehicle, we �rst examine the model employed to capture the e�ect of the gyroscope noise.

3.1. Noise Model for the Systron Donner Quartz Gyro

In the information provided in4 it is obvious that the Systron Donner gyro does not have a stable bias. From page 1-4: \Low Rate
Application - These gyros showed reasonable performance for rate scale factor stability but would not be useful for applications
where bias stability was of high importance to meet mission requirements. The bias changed signi�cantly as the input rate was
changing making predictable bias compensation very diÆcult".

Long term bias stability data were gathered to create a stochastic model useful for attitude estimator performance prediction.
This model assumes that the gyro noise is composed of 3 elements, namely: rate noise nr(t) (additive white noise), rate 
icker
noise nf (t) (generated when white noise passes through a �lter with transfer function 1=

p
s) and rate random walk nw(t)

(generated when white noise passes through a �lter with transfer function 1=s). The Power Spectral Density (PSD) of the
gyro noise was measured experimentally and the logarithmic plots of the PSD with respect to frequency were used to �t the
described model. The intensities calculated (ignoring the 
icker noise) were: �r =

p
Nr = 0.009 (Æ=sec)=

p
Hz and �w =

p
Nw

= 0.0005012 (Æ=sec)
p
Hz.

Based on this model5 the angular velocity ! = _� is related to the gyro output !m according to the equation:

_� = !m � b� nr; E[nr(t)] = 0; E[nr(t)n
0

r(t
0)] = NrÆ(t� t0) (1)

where b is the drift-rate bias and nr is the drift-rate noise assumed to be a Gaussian white-noise process. The drift-rate bias is
not a static quantity but is driven by a second Gaussian white-noise process, the gyro drift-rate ramp noise:

_b = nw; E[nw(t)] = 0; E[nw(t)n
0

w(t
0)] = NwÆ(t� t0) (2)

These two noise processes are assumed to be uncorrelated (E[nw(t)n
0

r(t
0)] = 0).

3.2. TCM2-50 Electronic Compass/Inclinometers Characterization
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Figure 2. E�ect of track movement on compass heading.

As mentioned the packbot is equipped with a TCM2 module that contains a compass and two inclinometers. The compass is
comprised of 3 orthogonal magnetometers that measure the local intensity of the magnetic �eld of the earth. This information
combined with the inclinometers' tilt angles - determined by the e�ect of the local vector of gravity on the contained viscous

uid - provides an absolute measurement of the attitude of the vehicle at a rate of 16Hz. The expected accuracy is �1.5Æ for



heading and �0.4Æ for tilt. These measurements are processed by the Kalman �lter in order to estimate the gyroscopes' biases
and reduce their in
uence on the orientation estimates.

Since the compass is a�ected by local magnetic �elds present on the robot, the TCM2 module has to be calibrated in order
to compensate for static �elds. However, such procedure cannot deal with the dynamic �elds produced by the metallic belts
inside the tracks of the robot. Experimental testing of the compass while manually rotating the tracks has shown variances of
over 130Æ (Figure 2). Now, nylon belted tracks are used whenever possible in order to avoid this problem.

When the vehicle is in motion the angles recorded by the inclinometers depend on both the gravitational vector and the
accelerations due to the interaction with the ground. These measurements do not re
ect the actual pose of the robot and for
this reason, absolute orientation measurements are processed by the �lter only when the robot is stopped.

3.3. Kalman �lter based attitude estimation

3.3.1. Dynamic Model Replacement

In our implementation of a Kalman �lter observer which estimates the orientation of the robot, we employed sensor modeling
instead of dynamic modeling. The reasoning behind this is as follows:

i) The most elementary reason is that every time there is a modi�cation of the robot (i.e. a mass changes, or a part is
relocated, or dimensions are altered) the dynamic modeling would have to be redone. Since the produced estimator is tailored
for a speci�c structure, a slightly di�erent vehicle would require a new estimator.

ii) A more practical reason is that dynamic modeling would require a very large number of states. An estimator has to be
practical as far as its computational needs are concerned. The size of the estimated state can have large computational demands
with very little gain in precision.

iii) Dynamic modeling and the added complexity caused do not always produce the expected results. One example is an
attempt by Le�erts and Markley6 to model the attitude dynamics of the NIMBUS-6 spacecraft, which indicated that dynamic
modeling with elaborate torque models could still not give acceptable attitude determination accuracy. For this reason most
attitude estimation applications in the aerospace domain use gyros in a dynamic model replacement mode.7

iv) The modeling of a mobile robot moving on rough terrain is particularly complicated because of the interaction between
the wheels of the vehicle and the ground. This interaction depends on many parameters which are diÆcult to measure and
requires simplifying assumptions to be made (the point contact assumption is frequently used). The modeling of the vehicle-
terrain dynamic e�ects (i.e. wheel impact, slippage, and sinkage) require prior knowledge of the ground parameters (i.e. friction
coeÆcients as a function of wheel slippage ratio, soil shear strength, elastic modulus, etc). In addition, lateral slippage is not
readily observable and cannot easily be accounted for in the dynamic model. Precise modeling of the motors is also required to
obtain the real values of the torques acting on each of the wheels. Since the applicability of Kalman �ltering techniques rests on
the availability of an accurate model, an inaccurate dynamic model can cause the attitude estimate to drift away from its real
value.

3.3.2. Indirect versus Direct Kalman �lter

A key aspect of our implementation of a Kalman �lter in conjunction with the inertial navigation systems (INS) is the use
of the indirect instead of the direct form. These forms of the �lter are also referred to as the error state and the total state
formulation respectively.8 As the name indicates, in the total state (direct) formulation, states such as orientation are amongst
the variables in the �lter, and the measurements are IMU outputs (e.g. from gyros) and external source signals (e.g. from
compass/inclinometers). In the error state (indirect) formulation, the errors in orientation are amongst the estimated variables,
and each measurement presented to the �lter is the di�erence between the IMU based estimates and the external source data.

There are some serious drawbacks inherent to the direct realization of the Kalman �lter. Being in the INS loop and using
the total state representation, the �lter has to maintain explicit, accurate awareness of the vehicle's angular motion and at the
same time attempt to suppress noisy and erroneous data. Sampled data require a sampling rate of at least twice the highest
frequency signal (in practice a factor of 5-10 is used) for adequate reconstruction of the continuous time system behavior. The
�lter would have to perform all the required computations within this short sampling period. Moreover, in most cases, the
estimation algorithm is allocated only a small portion of the processor's clock cycles.8 Frequently, it runs in the background at
a lower priority than more critical algorithms, such as real-time vision, obstacle avoidance and fault detection.

In addition, the dynamics involved in the total state description of the �lter include high frequency components and are well
described only by a non-linear model. The development of a Kalman �lter is predicated upon an adequate linear system model
but such total state model does not exist.

Another disadvantage of the direct �lter design is that if the �lter fails (as by a temporary computer failure) the entire
navigation algorithm will fail and the IMU would be useless without the �lter. From the reliability point of view it would be
desirable to provide an emergency degraded performance mode in such a case of failure.

The Indirect (error state) Kalman �lter estimates the errors in the navigation and attitude information using the di�erence
between the INS and external sources of data (e.g. compass/inclinometers). The INS itself is able to follow the high frequency
motions of the vehicle very accurately, and there is no need to model these dynamics explicitly in the �lter. Instead, the Indirect
�lter is based on a set of inertial system error propagation equations which are low frequency and adequately represented as
linear. Because the �lter is out of the INS loop and is based on low frequency dynamics, its sampling rate can be much lower



than that of the direct �lter. In fact an e�ective Indirect �lter can be developed with a sample period (of the external source)
on the order of minutes.8 This is very practical with respect to the amount of computer resources required. For these reasons,
the error state formulation is used in essentially all terrestrial aided inertial navigation systems.9

3.3.3. Quaternions in Attitude Representation

The three-parameter Euler angle representation has been used in most applications of the Kalman �lter in robot localization.10,11

However the kinematic equations for Euler angles involve non-linear and computationally expensive trigonometric functions. The
computational cost using quaternions is less than using Euler angles It is also more compact because only four parameters, rather
than nine, are needed. Furthermore in the Euler angle representation the angles become unde�ned for some rotations (the gimbal
lock situation) which causes problems in Kalman �ltering applications. Amongst all the representations for �nite rotations, only
those of four parameters behave well for arbitrary rotations. The reason is that a non-singular mapping between parameters
and their corresponding rotational transformation matrix requires a set of at least four parameters.12

Quaternions provide an elegant and convenient parameterization of the attitude. A unit quaternion is a global non-singular
four parameter representation also known as Euler symmetric parameters. Physical quantities pertaining to the motion of
rotation such as angular displacement, velocity, acceleration and momentum are derived in terms of Euler parameters in a simple
manner. Manipulating those equations is much easier using quaternion algebra.13 The generalized commutative properties of
quaternion multiplication are very useful when combining kinematic equations derived from successive rotations in space. The
attitude matrix computed from a quaternion (as a quadratic function) is orthogonal when the sum of squares of the quaternion
components is unity. If propagation errors result in a violation of this constraint the quaternion can be renormalized by dividing
its components by the (scalar) square root of the sum of their squares.

3.3.4. Attitude kinematics and error state equations

The physical counterparts of quaternions are the rotational axis n̂ and the rotational angle � that are used in the Euler theorem
regarding �nite rotations. Taking the vector part of a quaternion and normalizing it, we can �nd the rotational axis right away,
and from the last parameter we can obtain the angle of rotation.14 Following the notation in15 a unit quaternion is de�ned as:

q =

2
664

q1
q2
q3
q4

3
775 (3)

with the constraint
qT q = 1 (4)

where
q1 = nxsin(�=2); q2 = nysin(�=2); q3 = nzsin(�=2); q4 = cos(�=2) (5)

and n̂ =
�
nx ny nz

�T
is the unit vector of the axis of rotation and � is the angle of rotation.

The rate of change of the quaternion with respect to time is given by:

d

dt
q(t) =

1

2

(~!(t))q(t); 
(~!) =

2
664

0 !3 �!2 !1
�!3 0 !1 !2
!2 �!1 0 !3
�!1 �!2 �!3 0

3
775 (6)

where ~! =
~_� is the rotational velocity vector. At this point we present an approximate body-referenced representation of the

error state vector. The error state includes the bias error and the quaternion error. The bias error is de�ned as the di�erence
between the true and estimated bias.

�~b = ~btrue �~bi (7)

The quaternion error here is not the arithmetic di�erence between the true and estimated (as it is for the bias error) but it
is expressed as the quaternion which must be composed with the estimated quaternion in order to obtain the true quaternion.
That is:

Æq = qtrue 
 q�1
i , qtrue = Æq 
 qi (8)

The advantage of this representation is that since the incremental quaternion corresponds very closely to a small rotation, the
fourth component will be close to unity and thus the attitude information of interest is contained in the three vector component
Æ~q where

Æq '
�
Æ~q
1

�
(9)

Starting from equations:
d

dt
qtrue =

1

2

(
~_�true)qtrue (10)



and
d

dt
qi =

1

2

(~_�i)qi (11)

where ~_�true is the true rate of change of the attitude and
~_�i is the estimated rate from the measurements provided by the gyros,

it can be shown16 that
d

dt
Æ~q =

��
~!m

��
Æ~q � 1

2
(�~b+ ~nr) ;

d

dt
Æq4 = 0 (12)

with ��
~!m

��
=

2
4 0 !3 �!2
�!3 0 !1
!2 �!1 0

3
5 (13)

Using the in�nitesimal angle assumption in Equation (5), Æ~q can be written as

Æ~q =
1

2
Æ~� (14)

and thus Equation (12) can be rewritten as

d

dt
Æ~� =

��
~!m

��
Æ~� � (�~b+ ~nr) (15)

Di�erentiating Equation (7) and making the same assumptions for the true and estimated bias as in the previous section
(Equations (1) and (2)), the bias error dynamic equation can be expressed as

d

dt
�~b = ~nw (16)

Combining Equations (15) and (16) we can describe the error state equation as

d

dt

"
Æ~�

�~b

#
=

� ��
~!m

�� �I3�3

03�3 03�3

� "
Æ~�

�~b

#
+

� �I3�3 03�3

03�3 I3�3

� �
~nr
~nw

�
(17)

or in a more compact form
d

dt
�x = F�x+Gn (18)

This last equation describes the system model employed in the current Kalman �lter implementation.16 This estimator
combines the gyroscopes angular rates with the absolute orientation measurements from the compass/inclinometers in order
to estimate both the attitude of the vehicle and the gyro biases. As shown in17 this estimator acts as a high pass �lter on
the gyro signals �ltering out the low frequency noise component (bias) while weighing more their contribution during high
frequency motion when the compass/inclinometers are susceptible to disturbances. If absolute orientation measurements are
available continuously the �lter is capable of continuously tracking the gyro biases (Figure 3). In our case though, since the
robot uses the TCM2 sensor only when stopped, the �lter updates its estimate of the bias (Figure 4) only intermittently based
on its e�ect on the attitude estimates during the previous interval of motion. The resulting attitude estimates (Figure 5) are
then combined with the translational velocity measurements (from the encoders) to provide position estimates inbetween GPS
updates.� Although GPS data are nominally available at 10Hz, during dropouts the robot has to rely on the estimates provided
by the �lter in order to follow a given path.

4. SYSTEM ARCHITECTURE AND LEADER FOLLOWER CONTROL

The system architecture used to control the packbot is designed to allow multiple behaviors to command the robot simultaneously.
The driving commands from these behaviors are arbitrated upon, and from them a �nal command is composed. This allows
several behaviors using multiple sensors and imagers to work together e�ectively to carry out the commanded mission goals
(see Figure 6). A path following controller based on \carrot following" has been implemented and integrated into the packbot
system. This algorithm takes in a set of points that form the path to be followed and runs a combination of a pure pursuit and
a proportional-integral-derivative control scheme to direct the robot along the path.

�We are in the process of enhancing the current Kalman �lter implementation so as to fuse data from the accelerometers and the GPS
and provide improved position estimates.



0 50 100 150 200 250 300 350 400 450
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

bi
as

 (
de

g/
se

c)

time (sec)

b
true

    
b

estimate

Figure 3. Bias Estimation (simulation results): The solid line represents the true value of the gyro bias. The dotted line is the
estimate of the bias from the Indirect Kalman �lter. Though the estimate follows the true value it is obvious that there is a lag.
This is because the absolute orientation sensor does not measure the bias directly. It only measures its e�ect on the orientation
error.
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Figure 4. Bias Estimation (simulation results): The 
at parts of the estimate depict the constant bias assumption in the
integrator. The sharp step changes occur when absolute orientation measurements become available (every 100sec).

4.1. System Architecture

The navigation sensors are managed by device drivers which pass data through a software message queue to a single software
task which carries out the necessary calculations. This task runs the Kalman �lter and position estimation algorithms after each
piece of sensor data comes in. It then updates the current state of the robot in a shared memory space where other tasks can
access it. Currently the GPS is used to determine the robot's position both for recording and following paths. When the robot
is indoors, or when it drives into GPS-dropout areas, the position estimation is calculated with a simple interpolation using the
Kalman-�ltered heading and a raw odometry estimate from the wheel encoders.

The path recording and path following code, as well as other software tasks, can access the latest robot position and
orientation estimates at variable rates and make decisions accordingly. A software task monitors the robot's current position
and records a 3-D point after a certain constant o�set has been passed thereby forming the robot's trail from successive points.
The robot's trail is accessed, downloaded, and then edited using the Operator Control Unit, a GUI running on a laptop that is
used to control and test the packbot. The modi�ed or whole trail is sent to another robot or back to the same packbot, which
accepts the trail, passes it to the path following module, and begins driving with a \go" command.

Another algorithm that has been tested and used on the packbot is the Obstacle Detection and Obstacle Avoidance (ODOA)
behavior. It uses a stereo camera pair to build a range map and obstacle map of the area in front of the robot. ODOA is
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Figure 5. Attitude Estimation (simulation results): The solid line represents the actual orientation (yaw) of the robot,
the dotted line shows the dead-reckoned yaw estimates obtained by simply integrating the gyro signals, and the dashed line
corresponds to the Kalman �lter estimates when compass measurements are provided to the �lter intermittently (t=100, 200
sec). Even though all the compass measurements during this interval are displayed here, only two of them were processed for
the orientation updates of the �lter. The two sharp corrections of the yaw estimates correspond to the time instants that these
measurements became available to the �lter.

Figure 6. System Architecture.

also capable of using an on-board ladar scanner to detect obstacles and avoid them. Both the path following and the ODOA
behaviors output driving commands in the format of votes which are sent to the system motion arbiter.

The arbiter is a software task that takes input votes from two or more behaviors and composes them into one driving
command. The input votes are a set of twenty three forward arcs of di�erent curvature, twenty three backward arcs of di�erent
curvature, and two turn-in-place votes. Each of the arcs in each vote sent to the arbiter has a robot speed and \desire" weight.
The behavior sending the vote indicates the preference of driving direction with di�erent desire weights along each arc and
completely prohibits an arc by assigning it zero. The arbiter determines the chosen driving direction and speed by averaging
the weights of the arcs and using the minimum speed of the largest weighted arc. In this way, protective behaviors can modify
the motion of the robot as directed by goal-seeking behaviors thereby, providing autonomous self-protection for the packbot.

4.2. Path following control algorithm

Path-following steering control is based on a carrot-following approach. A set of subgoals is transmitted to the follower vehicle.
The follower vehicle uses the last two subgoals to extend the path sequence backwards, as shown in Figure 7. The follower
vehicle then uses this extended path segment to locate a carrot position that lies a lookahead distance L away from the vehicle
center. The carrot position is updated every cycle by the path following algorithm. At any given instant, the follower assigns
the largest weight to the arc that passes closest to the carrot.

The carrot is located by �nding the intersection of a circle (centered at the vehicle center with radius L) and the extended



Figure 7. Carrot Following Approach.

path segment. If there are two intersections, the one beyond the lateral position is chosen. If there is no intersection, the lateral
position is chosen as the carrot. The steering curvature that will move the vehicle center directly over the carrot position is
chosen as the commanded curvature.

4.3. Pure Pursuit Controller

The authors have experimented with two controllers that produce command curvatures: pure pursuit and proportional-integral-
derivative (PID) control. Pure pursuit has been widely used as a steering controller for autonomous vehicles.18,19 Amidi and
Thorpe20 compared pure pursuit with a quintic polynomial �t method and a classic control theory approach. Ollero and
Heredia21 analyzed the stability of the pure pursuit algorithm for path following at constant speed (3, 6, and 9 m/s) for straight
and constant curvature path sections, estimating the time lag for computing, communications, and actuator delay. Kelly19 has
described an adaptive pure pursuit controller, allowing the look-ahead gain to increase as a function of the lateral path error.
Rankin22 has evaluated a pure pursuit controller, a PI controller, and a weighted pure pursuit/PI controller.

The controlling equation for pure pursuit is shown in Equation (19). kpure pursuit is the command curvature and ycarrot is
the y coordinate of the carrot position as measured in the vehicle coordinate system. Pure pursuit is a proportional controller,
where, ycarrot represents the current error and (2=L2) represents the proportional gain. The lookahead distance L should be
appropriate for the mission speed.

kpure pursuit =

�
2

L2

�
ycarrot (19)

4.4. PID Controller

The second method of steering control that was implemented is a proportional-integral-derivative (PID) controller, as applied
to the error in the vehicle's heading. The idealized equation of a PID controller is shown in Equation (20). PID control contains
a term that is proportional to the error, one that is proportional to the integral of the error, and one that is proportional to the
derivative of the error.23

kPID(t) = G

�
e(t) +
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Z t

0
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de(t)

dt

�
(20)

The integral term acts as a spring (in a spring-mass-damper system) in that it eliminates steady state error. The derivative term
acts as a damper. The parameters that are characteristic to the system are the proportional gain G, the integral time TI , the
derivative time TD, and the sampling time T . For small sample times T , the idealized equation can be written as a nonrecursive
di�erence equation, as shown in Equation (21).
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The heading error en is calculated by �nding the orientation of the vector from the vehicle's control point to the target position
with respect to the axis in the direction of the vehicle's current heading. A positive error results in a left turn and a negative
error results in a right turn. Equation (21) can be rewritten as the di�erence equation

kPID;n = kPID;n�1 + q0en + q1en�1 + q2en�2 (22)

where,
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The PID controller works to force the heading error to zero so that the vehicle is always pointed towards the current carrot
position. The parameters gP , gI , and gD are respectively proportional, integral and derivative gains. When gD = 0, the PID
controller is reduced to a proportional-integral (PI) controller.

4.5. Combined Pure Pursuit/PID Control

Both the pure pursuit and PID methods of steering control have advantages and disadvantages. The pure pursuit controller
is easy to tune and performs well when the follower vehicle is started on or near the extended path segment. If the lateral
path error is large, however, this method can become unstable. Stability can be improved by using an adaptive pure pursuit
controller. With the adaptive version, the look-ahead distance is a function of the lateral path error. The adaptive controller,
however, can cause a signi�cant portion of the path segment (traversed by the leader vehicle) to be ignored by the follower
vehicle.

The PID method is stable (when adequately tuned) over the range of heading errors. This includes the scenario where there
is a large lateral path error. This controller does, however, cause an inherent lateral path error when traveling around curves.
In an attempt to combine the desirable features of both the standard pure pursuit and PID controllers into a single controller,
the output of each controller is averaged, as shown in Equation (23). The arc that is closest to this curvature is then assigned
the largest weight.

kcommand =
kpure pursuit + kPID

2
(23)

5. EXPERIMENTAL RESULTS

5.1. Indoor Testing
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Figure 8. Indoor Testings.

The path following algorithm is currently being run at a rate of 10 Hz which is the same rate at which the position estimate
is updated using either odometry or GPS data. Due to the reporting speed of the inertial navigation sensors, the Kalman �lter
updates the heading at over 256 Hz. During all tests the robot traversed the paths at a speed of 50cm/sec. To provide enough
detail to describe the path without accumulating an unnecessary number of points, an interval of approximately 20 cm between
points was used to record the robot's trail.



Initially, several indoor runs were used to test the follower algorithm and tune its parameters. Figure 8 shows a path recorded
by the packbot and the three separate path-following runs carried out by the same robot using the di�erent control methods
(pure pursuit, PID, and the combination of the two). In the indoor tests no GPS data could be received so all position estimates
used the Kalman �lter heading and odometry from the wheel encoders. This also means that only relative robot coordinates
were known so even though the start and �nish of the runs are at the same points in the graph, in actuality the robot was
possibly starting in very di�erent locations.

The pure pursuit method tended to oscillate over the path being followed more than the PID but it also managed to
stay closer to the path in general. The PID control kept the robot's heading going in a parallel direction with the path but
maintained a slight o�set for longer period of time than the pure pursuit control. Currently further work is being done to tune
the PID controller to better suit the packbot system. The average of the controller error was used as a numerical measure of
the performance of each algorithm across various runs. The simple combination of the two controllers consistently reported the
lowest controller-error averages.

5.2. Outdoor Results
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Figure 9. Outdoor following.

In outdoor runs the packbot again was used to trace a path and then was given its own trail to follow. During these tests
the Kalman �lter provided the robot's heading and the GPS gave position data. While in motion the compass/inclinometers
noise is higher and thus the Kalman �lter relies more on the gyro package for heading approximation. After some initial
experimentation several metal objects embedded in the concrete of the testing ground were found to be causing the magnetometer
to provide incorrect readings to the Kalman �lter which in turn caused an incorrect initial heading. This heading o�set caused
a corresponding constant o�set of the robot from the path it was following. These metal objects were then avoided in choosing
starting positions for the robot.

In Figures 10 and 11 a GPS dropout is indicated. When driving under the obstacle, a small SUV, all GPS data was cut o�
and the robot position estimator had to rely on the Kalman �lter heading and wheel odometry exclusively. Using this method
the recorded trail was interpolated through the GPS dropout smoothly and the packbot was able to follow the path up to,
under, and past the obstacle without any noticeable problems. The GPS data converged approximately 10-14secs after leaving
the dropout area at which point the position estimator switched back to using it to report the packbot's location.

Figure 10 also shows a few sudden changes in the coordinates of the path followed due to un�ltered GPS jumps. As directed
by the follower behavior, the packbot traversed these segmented pieces of the path smoothly.

6. SUMMARY AND EXTENSIONS

In summary, we have integrated three-axis gyros and accelerometers, a compass/inclinometer package, track odometry, di�er-
ential GPS, and an indirect, error-state Kalman �lter into a sensor system for small robot position estimation. We summarized



76 78 80 82 84 86 88 90 92 94
4

6

8

10

12

14

16

18

meters

m
et

er
s

Path to Follow
Robot Trail   

E 

S 
S 

GPS Dropout
     (SUV) 

Figure 10. Outdoor following with GPS skips and dropout.
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Figure 11. Outdoor following with GPS dropout.

problems that arose with these sensors and the solutions we found. Our sensor survey included integrated IMUs that will soon
be on the market. These are smaller than the combination of sensors used here and have advertised performance speci�cations
that are at least as good as the sensors we use now; these IMUs are attractive for future systems.

In the leader/follower behavior, we implemented three versions of the path-following controller: pure pursuit, PI, and an
average of the two. Indoor and outdoor experiments over up to roughly 40 meters showed good performance for all three con-
trollers, with maximum path deviations on the order of 50 cm. This included segments where the path went under vehicles that
caused GPS dropouts and paths with sharp kinks due to GPS outliers. The averaging controller showed better error performance



than either pure pursuit or PI alone, but we have not done extensive characterization testing to date.
In future robot systems and experiments, position estimation performance may be worse than reported here due to larger

areas of GPS dropout or the use of smaller, lower cost GPS units with poorer precision. We are currently extending our system
to include optimal path smoothing to address GPS dropouts and to include special-purpose landmark recognition for path-
following through constricted areas of known types, in particular culverts and doorways. We are also pursuing more general
outdoor mapping and landmark recognition algorithms to further reduce the reliance on GPS.
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